PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023 NETWORK THEORY
(ECE Branch)
Time: 3 hours
Max. Marks: 60

> Note: Question Paper consists of Two parts (Part-A and Part-B) Answer all the questions in Part-A $(5 \times 2=10 \mathrm{M})$

Q.No.		Questions	Marks	CO
1	K)	Draw the dual network of RLC series network.	$[2 \mathrm{M}]$	1
	b)	Derive a relation between bandwidth and quality factor for series resonance circuit.	$[2 \mathrm{M}]$	2
	c)	What is the condition for maximum power transfer in a circuit?	$[2 \mathrm{M}]$	3
	d)	Write the open circuit parameters.	$[2 \mathrm{M}]$	4
	e)	State and explain the initial value theorem of Laplace transform.	$[2 \mathrm{M}]$	5

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2.		Obtain the fundamental loop and fundamental cut-set matrices for the graph shown in fig.	[10M]	2	
OR					
3.		A graph is shown in fig. Find the tie-set and cut-set matrices using network topology.	[10M]	1	
UNIT-II					
4.	a)	Derive the expression for coefficient of coupling in magnetic circuits.	[5M]	2	

	b)	Derive the expression for equivalent inductance when inductors are connected in parallel	[5M]	2	
OR					
5.		A series circuit comprises of R, L and C is supplied at 220 v 50 Hz . At resonance the voltage across the capacitor is 50 v . The current at resonance is 1 A . Determine the circuit parameters R, L and C .	[10M]	3	
UNIT-III					
6.		For the network shown in Fig., determine the current through load R_{L} using Norton's Theorem.	[10M]	3	
OR					
7.		Refer to network shown in Fig. , determine the value of resistance (R) that may be connected across terminals ' A ' \& ' B ' so that maximum power is transformed from the circuit to the resistance.	[10M]	3	
UNIT-IV					
8.		In the figure below, two identical transformer are shown. Determine the Zparameters of the network.	[10M]	4	
OR					
9.		Obtain Z and Y parameters for the given circuit shown in fig..	[10M]	4	
UNIT-V					

